Role of laminin bioavailability in the astroglial permissivity for neuritic outgrowth.

نویسنده

  • Marcienne Tardy
چکیده

The mechanisms involved in the failure of an adult brain to regenerate post-lesion remain poorly understood. The reactive gliosis which occurs after an injury to the CNS and leads to the glial scar has been considered as one of the major impediments to neurite outgrowth and axonal regeneration. A glial scar consists mainly of reactive, hypertrophic astrocytes. These reactive cells acquire new properties, leading to A non-permissive support for neurons. Astrogial reactivity is mainly characteriized by a high overexpression of the major component of the gliofilaments, the glial fibrillary acidic protein (GFAP). This GFAP overexpression is related to the astroglial morphological response to injury. We hypothesized that modulation of GFAP synthesis, reversing the hypertrophic phenotype, might also reverse the blockage of neuritic outgrowth observed after a lesion. In this article, we review findings of our group, confirming our hypothesis in a model of lesioned neuron-astrocyte cocultures. We demonstrate that permissivity for neuritic outgrowth is related to phenotypic changes induced in reactive astrocytes transfected by antisense GFAP-mRNA. We also found that this permissivity was related to a neuron-regulated extracellular laminin bioavailability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein (GFAP) mRNA in injured neuron-astrocyte cocultures.

In the adult CNS, axons fail to regenerate after injury. Among the cell interactions that lead to this failure are those developed with astrocytes. In an effort to elucidate the mechanisms underlying these negative interactions, we have used astrocytes treated with antisense glial fibrillary acidic protein (GFAP) mRNA to inhibit the formation of gliofilaments, indispensable for the astroglial m...

متن کامل

Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1

The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert 'non-classical', morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, im...

متن کامل

The NC1 domain of type IV collagen promotes axonal growth in sympathetic neurons through interaction with the alpha 1 beta 1 integrin

We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (less than or equal to 24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the ...

متن کامل

The NC1 Domain of Type IV Collagen Promotes Axonal Growth in Sympathetic Neurons through Interaction with the 1B1 InteglSn

We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (~<24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the intact molecule in s...

متن کامل

Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.

Despite considerable progress in recent years, the underlying mechanisms responsible for the failure of axonal regeneration after spinal cord injury (SCI) remain only partially understood. Experimental data have demonstrated that a major impediment to the outgrowth of severed axons is the scar tissue that finally dominates the lesion site and, in severe injuries, is comprised of connective tiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anais da Academia Brasileira de Ciencias

دوره 74 4  شماره 

صفحات  -

تاریخ انتشار 2002